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Abstract--This paper numerically investigates the interaction between the Marangoni and the double 
diffusive convection in the Maxworthy [Journal of Fluid Mechanics, 1983, 128, 259-282] set-up. The model 
consists of a two-cavity rectangular system in which the smaller cavity is located at the top left comer of 
the larger one. The larger cavity is filled with hot salty fluid while the smaller one contains cold fresh fluid. 
This problem is solved for two different cases : the first one contains a rigid upper cavity, thereby, eliminating 
the Marangoni effect, and the second one contains a free-surface upper cavity. For the latter case, the 
interaction between the Marangoni (thermal and solutal) and the double diffusive regimes is investigated 
in detail. Finite element modelling results indicate that salinity induces stronger convection than the thermal 
ones. For the case for which a free surface exists, thermal and solutal Marangoni convection further 
enhances the strength of the cellular flow. Numerical results agree qualitatively with the Maxworthy 
experiment. It is shown that the governing equations should be solved in the complete form and that the 
surface tension should be taken into consideration during the numerical analysis. © 1998 Elsevier Science 

Ltd. All rights reserved. 

1. INTRODUCTION 

When heat and species transfer exist within a fluid 
layer, the temperature and concentration gradients 
create a convection mode. This phenomenon is called 
double-diffusive convection. According to its dynamic 
characteristics, double diffusive convection can be cat- 
egorised into fingering or  a diffusive regime [1-4]. One 
example of  the fingering regime is the hot  salty fluid 
layer overlying a cold fresh fluid layer. Similarly, an 
example o f  the diffusive regime is a hot  salty fluid 
layer (slower diffusion) is underlying a cold fresh fluid 
layer (faster diffusion). The latter case is the subject 
of  our investigation. 

Even though ,evidences indicate that double diffus- 
ive processes were observed centuries ago [5], the 
diffusive process during the mot ion of  an intruding 
fluid remains one o f  the most elusive topics of  fluid 
mechanics [6]. Thangam and Chen [7] were some of  
the first researchers to purposely devise an experiment 
to better understand double diffusive convections. 
They injected lighter salty water onto a heavier and 
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colder body of  salty water. While this experiment led 
to the observation of  the salt finger convection, no 
quantitative results were reported. This problem of  
stable stratification that complicated the description 
of  the current was remedied by Maxworthy  [3] who 
devised a much simpler experiment to observe the 
double diffusive convection. He studied the intrusion 
of  a sugar solution into a salt solution. The main 
reason for using salt and sugar was that  the diffusivity 
of  sugar is less than that of  salt. Maxworthy [3] 
measured the spreading rates of  the two-dimensional 
double diffusive intrusions and found that the transfer 
of  mass and momentum across the sugar/salt interface 
dominates the mot ion of  the intrusion. In his exper- 
imental set-up, al though an air gap existed between 
the solution and the top plate, no Marangoni  con- 
vection was observed. This absence may be due to the 
contamination at the free surface [8, 9]. However,  
no numerical experimentation has been reported to 
confirm or refute this postulate. 

Yoshida et al. [10] repeated the Maxworthy work 
numerically without taking into consideration the 
Marangoni  effects. In their analysis, cold/fresh water 
was released on to the ambient warm/salty water. 
They found that three parameters dominate the con- 
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NOMENCLATURE 

c concentration of the fluid [%wt] 
Co reference concentration of the fluid 

[%wt] 
C non-dimensional concentration 
Cp specific heat [cal g-1 C-i]  
g gravity vector [cm s -2] 
k conductivity [cal cm -1 s -~ C -l] 
L characteristic length [cm] 
p pressure [g cm i s-2] 
t time [s] 
T temperature [°C] 
To reference temperature [°C] 
u0 reference velocity [cm s-i]  
x, y dimension [cm]. 

tic diffusive volume expansion [%wt-l]  
fir thermal volume expansion [C-i] 
Ac initial concentration difference [%wt] 
AT initial temperature difference [°C] 
0 non-dimensional temperature 
# viscosity of the fresh water [g cm-1 s-1] 
v kinematic viscosity of the fresh water 

[cm 2 s -I] 
p density of the fresh water [g cm-3] 
try0 surfacen tension at the reference 

temperature [dyne cm-l]  
z non-dimensional time 

stream function. 

Greek symbols 
ct c solutal diffusion coefficient 

Subscript 
0 reference value. 

vection phenomenon. They are the turbulent Prandtl 
number, the turbulent thermal Rayleigh number and 
finally the Turner number. In their study, they used 
the Navier-Stokes equations for laminar regime. In 
their numerical analysis, they modified the mass trans- 
fer equation and introduced the density flux ratio. 
They ignored the influence of the free surface force in 
the flow. Also, by taking the vertical diffusion equal 
to the horizontal one, they simplified the problem 
considerably. As a consequence, no solutal Rayleigh 
number appears as an independent parameter in their 
work. 

Hyun and Bergman [ 11] studied the double diffusive 
phenomenon for a two-layer system numerically. 
They concentrated their study to the interfaciai behav- 
iour between the two-layer systems and determined 
the critical Rayleigh number that leads to the destruc- 
tion of the interface. Also, they reported vigorous 
fluctuations of temporal Nusselt numbers, indicating 
the existence of unstable flow regimes. However, no 
broad discussion was provided on the topic. No com- 
ment was made on the influence of the interfacial 
tension between the two fluid systems. 

Chen and Su [12] conducted a linear stability analy- 
sis on a layer of stratified salt solution with a free 
surface heated from below. Results indicated that the 
onset of instability will occur at a much lower thermal 
Rayleigh number when reasonable surface tension 
gradient with respect to temperature and con- 
centration are assumed. Tanny et al. [13] studied the 
effects of interaction between Marangoni and double- 
diffusive instabilities in a less contaminated system. 
In their experiment, a cavity filled with different salt 
concentrations was subject to a temperature difference 
between the top and the bottom plates. A small air 
gap at the top surface between the solution and the 

plate was created to allow the Marangoni effect to 
take place. They reported that at high initial solutal 
Rayleigh numbers (Rac > 5.3 106), Marangoni insta- 
bilities occur prior to the double diffusive instabilities. 
At lower initial solutal Rayleigh numbers (Rac< 5.3 
106), both Marangoni and double diffusive instabilities 
occur simultaneously. Their experimental study was 
complimented with a stability analysis that showed 
reasonable agreement with experimental results. 

The main objective of this paper is to examine 
numerically the interaction between the Marangoni 
and the double diffusive convection using the Max- 
worthy experimental set-up. Different parameters that 
influence the convection are studied. In particular, the 
importance of the Prandtl number, the Lewis number 
and finally the thermal and solutal Marangoni num- 
bers are examined in detail. The complete Navier-  
Stokes equation was used without introducing the 
density flux ratio as in Yoshida et al. [10] case. Our 
numerical results reveal the physics behind the Max- 
worthy experiment and demonstrate the effectiveness 
of coupling the Marangoni effects with the double 
diffusive convection. 

2. GOVERNING EQUATIONS AND NUMERICAL 
PROCEDURE 

The complete Navier-Stokes equations together 
with the energy and the solutal equations were solved 
numerically using the finite element technique. The 
prototype modelled was the experimental set-up as 
reported by Maxworthy [3]. 

2.1. Governing equations and boundary conditions 
The momentum balance equation was represented 

by the Navier-Stokes equation. In the x direction, the 
equation is written as follows : 
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a[~ 0u aul @. ra u 1 
p +u~+o~j=-~x+UL~-#+@, j. (1) 

In the y direction, the equation is written as : 

oF, av avl ap F a2v a2v7 
= - + 

- p g [ t i r ( T -  To)-tic(C-Co)]. (2) 

In the above equations, (u, v) are the velocity com- 
ponents in the x and y directions, respectively. The 
pressure is denoted by p, the temperature is T, the 
concentration is c and the density is p. The time is 
known by t, the thermal volume expansion is fir, the 
solutal volume e, xpansion is denoted by tic, the vis- 
cosity is denoted[ by # and g is the gravity constant. 
The mass conservation is written in the form of the 
continuity equation as follows : 

8u 3v + ~ = 0. (3) 

The energy balance equation is expressed as follows : 

FOT OT OT-] [-02T O T1 
, C , , L s -  = + ( 4 )  

where Cp is the specific heat, Tthe temperature and k is 
the conductivity of the fluid. Finally, the mass transfer 
equation for the solute is written as follows : 

[~ ac acl r a2c a2c 1 
= + (,) 

In the above equation, c is the concentration or 
salinity of the fluid and Ctc is the solutal diffusion 
coefficient. Equations (1)-(5) were rendered dimen- 
sionless by using the following dimensionless vari- 
ables : 

u v x y P =  p 
u=-,uo v=-,u0 x=-£, Y= Z' pu~ 

tUo T-- To c - -  Co 
Uo=x/~tirATL, z = - - ~ ,  O= A ~ '  C =  Ac 

(6) 

where u0 is a refi~rence velocity (assumes u0 = 0.4427 
cm s -~ for a t i t =  2×  10 -4 C - l ,  A T =  I°C, A c =  I, 
L = 1 cm a n d g  --= 980 cm s-2), ATthe  initial tempera- 
ture difference, and L is a characteristic length (see 
Fig. 1). Equations (1)-(5) in their dimensionless forms 
become as follows : 

Navier-Stokes equations 
x-direction 

.au] oi' l_k[o2u a~u] [~v+ ov v ~  - ~ +  
L~  v ~  + = ~ Lax~ + ~-~j. 

(7) 

y-direction 

[OV dV O ~ ] = _ a P  - -  [02V 82V 1 

ticAC ~q - [~- ~ ~j (8) 

where Gr = (gflrATL3/v 2) is the Grashof  number. 

Continuity equation 

+ = O. (9) 

Energy balance equation 

[ +oo oo 

(lO) 

where Pr = (Cp#/k) is the Prandtl  number  and 
Rat  -- (gtirA TL3/va) is the thermal Rayleigh number.  

Mass balance equation 

(11) 
where Sc = (p/pCtc) is the Schmidt number  and 
Rac = (gflcAcL3/vOtc) is the solutal Rayleigh number.  

Figure 1 shows the model to be solved and the 
boundary  conditions used in this analysis. It consists 
of a cavity having a width of 0.5 cm (W1) and 1 cm 
long (L) enclosed in a cavity of 1 cm width (14II) and 
10 cm length (L2). This model is a simple case of 
the Maxworthy [3] experimental model. The smaller 
cavity contains the cold fresh water known as being 
the faster diffusing solution and the bigger cavity con- 
tains the hot salted water known as the slower diffus- 
ing solution. At time t = 0, the fresh water is released 
to the salted cavity. The initial temperature and con- 
centration differences, between the salted and the fresh 
water, are set equal to unity. The thermal boundary  
condition dictates that no heat is lost to the environ- 
ment. Therefore, at all sides of the cavity, zero heat 
flux or temperature gradient normal to the wall is 
applied. In addition, zero concentration gradient nor- 
mal to the cavity wall is prescribed. The velocity at all 
external walls of the cavity are assumed equal to zero. 
No other boundary  condition is required to solve the 
problem. For  the free surface case, the Marangoni  
boundary conditions are discussed in a later section. 

2.2. Finite element formulations 
The finite element mesh consisted of 5125 nodes. 

The mesh distribution is shown in Fig. 1. This indi- 
cates that the number  of grids was increased greatly 
in the areas where the steepest gradients are expected 
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Fig. 1. Finite element model and boundary conditions. 

to exist. With this distribution, the total number of 
grids was found to be adequate. In these elements, 
velocity, temperature and concentration degrees of 
freedom were present at each node using the same 
order of interpolation. The pressure has a bilinear 
approximation and their degrees of freedom are 
located at the four points of 2 x 2 Gaussian inte- 
gration. The segregated method was used to solve this 
set of differential equations. At each iteration, the 
pressure was calculated and a mass adjustment of the 
velocity field was done. This ensures that the velocity 
fields satisfy the continuity equation even before con- 
vergence is achieved. The solution is assumed to be 
reached when the following criterion 

L[ g i -  g i - ,  II 
~< 0.001 

LL~ill 

is satisfied. The symbol, g signifies all nodal values of 
a particular degree of freedom. In the present case, 
consists of the pressure, the two components of 
velocity, the temperature and the concentration. 

This transient problem was solved for different time 
steps using the backward method with variable time 
interval. In order to start the calculation with a high 
accuracy, the first five time steps were fixed for a time 
interval of 0.001. Above these five time steps, the time 

interval was variable. For further details of the model 
see ref. [14]. 

3. RESULTS AND DISCUSSION 

The problem was solved for two different cases. In 
the first case, the upper horizontal surface (e.g; at 
Y = 1) is assumed to be a fixed wall and the boundary 
conditions, as shown in Fig. 1, are applied. In the 
second case, the upper horizontal wall is set to be a 
free surface in order to study the thermal and solutal 
interface tension gradient effect and to be closer to 
Maxworthy's experimental set up that had a free 
surface. 

3.1. Upper horizontal surface modelled with a rigid wall 
The problem was solved for two different Rayleigh 

number (Ra t  = 106 and R a t  = 104). This case was 
close to the one studied by Yoshida et al. [10]. Unfor- 
tunately, the stream functions and concentration con- 
tours of their work did not have any label, making it 
impossible to compare their work with ours. However, 
a qualitative comparison was done and results were 
found to be comparable. Our study is comparable to 
the case of fixed volume release reported by Max- 
worthy. A direct comparison of our study with the 
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results of Maxworthy is made later. The Prandtl num- 
ber Pr was set equal to 10 (same value Yoshida et al. 
[4] used to model the Maxworthy experiment). The 
Lewis number Le [Le = (ar/gc) = (Sc/Pr)] is known 
to be the ratio of the thermal diffusivity to the solutal 
diffusivity. In our analysis, two different values of the 
Lewis number were used (Le = 1 and Le = 100). In 
addition, the ratio of the thermal diffusivity in the 
horizontal and vertical direction was assumed to be 
equal to unity. Another dimensionless parameter, the 
Turner number (Rp), is the ratio of the salty water 
density difference to the fresh water density difference. 
Since the density of the salty water (slower diffusing 
substance) is written as : 

Pc = po(1 +flcAc) 

and the density of the fresh water (faster diffusing 
substance) is written as : 

Pr = po(1 +flrAT). 

The Turner number (Rp) can be written as : 

Rp = [(Pc--Po)/(Pr--Po)] = (flcAc/flrAT). 

In our case the Turner number was set equal to unity. 
Based on the above definition of the thermal Rayleigh 
number and the solutal Rayleigh number together 
with the Lewis number and the Turner number, these 
terms are related as follows : 

Rac = R a r ' L e ' R p .  

Once the velocities were computed, the stream func- 
tion ff was determined using the following well known 
relationships, u = (Odg/dy) and v = - (a~k/Ox). Stream 
functions are non-dimensionalised using a reference 
stream function value given by 

Figure 2(a) shows the concentration profiles and 
the stream line contours for a Lewis number equal to 
unity and for a thermal Rayleigh number equal to 106 
at a time t = 7.5 s. The intrusion of the salty water 
into the fresh water is clearly seen in the figure. A 
descending flow to the bottom of the cavity with 
increasing salt concentration and ascending salty 
water with lower concentration to the top of the cavity 
is observed. The fresh fluid is entrained into the region 
of salty water creating a backward flow against the 
main general forward motion of the main intrusion. 
This phenomenon is similar to the one observed by 
Maxworthy [3]. Counter-clockwise convection cells 
are displayed in Fig. 2(a) for the same time step. The 
Lewis number was set equal to unity, leading to say 
that the thermal and solutal Raleigh numbers are 
equal. Since the boundary conditions are the same for 
both the temperature and the concentration and with 
a Turner number equal to unity, the two variables, 
temperature and concentration will have the same 
profiles. At a later time, the intrusion advances and the 
convection becomes more noticeable. This is shown in 
Fig. 2(b), that depicts results after 60 s. 

(a) 

¥1 = 0 .06  I 

Cd =0 .99  

{b) 

¥1=0.01 

, C~ =0.99 

Fig. 2. Stream function and concentration contours (Le = 1, Rat = 106, Rac = 106) .  
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~ 4 0 s = 0 . 9 8  
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C4 ~--0.99 

~Pn = 0.01 

= 0.98 

_ _  " , ~ C 4  --0.99 

Fig. 3. Stream function, temperature and concentration contours (Le = 100, Rat  = 106, Rac = 10s). 

Figure 3 shows the temperature, the concentration 
and the stream function at various time steps for the 
case of  a Lewis number equal to 100. The temperatures 
are displayed in a non-dimensional form. Because A T 
is set equal to one, to convert  the temperature to a 
dimensional form, one must add to it the reference 
temperature, which is 20°C. The solutal Peclet number 
is 100 times higher than that of  the thermal Peclet 
number. Figure 3(a) shows the concentration/ 
temperature contours and stream functions for a time 
t = 7.5 s. Note  that for this early time, there is little 
difference in these contours from those of  Le = 1, 
especially for the concentrat ion/temperature 
contours. However,  the changes occurred for the con- 
centration variables leading to a change in stream 
functions since the two variables are coupled through 
the solutal and the Navier-Stokes equations. For  this 
case the temperature and concentration contours are 
no longer identical. By comparing the concentration 
contours, one can observe that the shape of  contours 
has evolved. Because a relatively higher Peclet number 

was used for the latter case, a less steep gradient is 
formed at the base. 

Another  way to study the double diffusive effect is 
by examining the concentration and the temperature 
profiles at the interface between the fresh water cavity 
and the salty water cavity. This interface is part of  the 
vertical line located between point 1 (X = 1, Y = 0) 
and point 2 (X = 1, Y = 1) as shown in Fig. 1. Figure 
4 displays the concentration and the temperature pro- 
files for the two Lewis numbers used in the model  and 
for a thermal Rayleigh number R a t  equal to 106 and 
for different time steps. Figure 4(a) shows the tem- 
perature profiles for the case of  Le = 1. The descend- 
ing flow to the bot tom of  the cavity and the backflow 
is clear at time t = 7.5 s. As the time increases, the 
system becomes more stable and the thermal con- 
vection becomes more dominant  over the solutal con- 
vection. By comparing the temperature profiles in Fig. 
4 one can see that a distinct cold spot exists only at 
time t = 0 s. As time progresses, the cold spot dis- 
sipates to yield to a monotonous  variation with 
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distance, for a time of 60 s. However one cold spot 
(near the bottom left comer) and a hot spot (near the 
top right comer) persist. 

For the case of Le = 100, the double diffusive 
phenomenon is more obvious: It is interesting to note 
the shape of the descending flow. A cold high con- 
centration plume, as shown in Fig. 4(b), descends to 
the bottom of the cavity. At higher time steps (e.g; 
t = 60 s), the concentration profile is still not stable 
compared to the case of Le = 1. At time t = 7.5 s, a 
plumed shape is captured in Fig 4(b) but as the time 
increases, the thermal convection becomes more 
dominant. The existence of a solutal hump (at 60 s) is 
more evident for this case than the one for Le = 1. In 
fact, a modest concentration anomaly persists even at 
60 s even though the concentration hump appears to 
have dissipated away significantly. For the case of 
Le = 100, the temperature profile differs distinctly 
from the concentration profile. Even though with a 
Le of 100, a difference is expected, the change in shape 
is remarkable. At earlier time, the shapes of the con- 
centration and temperature profiles remain very simi- 
lar. At a later time, however, temperature rises sharply 
near the base with a distinct thermal hump dominating 
the flow. For the case of Le = 100, no stable profile 

appears for either concentration or temperature. 
However, the concentration profile is clearly closer to 
reaching a stable regime. 

Figure 5 shows the velocity vectors for various time 
steps and for a Lewis number equal to 100. A counter- 
clockwise convection appears as predicted. Beyond 
the interface, convection does not exist. At time 
t = 7.5 s, a secondary flow appears at the bottom left 
comer but disappeared at a more advanced time. At 
a later time, the velocity decreases in magnitude since 
the thermal effect acts against the diffusive effect. In 
all cases, single-cell convection persists, however, even 
at later times, no steady state appears to have taken 
place. 

Figure 6 demonstrates the effect of thermal con- 
vection in the system for different values of the Lewis 
number Le. In this case, the Rayleigh number was set 
equal to 104. As the Rayleigh number decreases, the 
thermal effect becomes less pronounced, leading to a 
slower convection. The concentration interface was 
superimposed to the stream function contour as 
shown in Fig. 6. For the case of a Lewis number equal 
to 100, if one compares the concentration contours 
plot between Figs. 3 and 6 for a time t = 60 s, it is 
obvious that the interface (e.g ; C = 0.99) has the same 

(a) 
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¥ 
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(b) 
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Fig. 4---continued. 
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Fig. 5. Velocity vectors for Le = 100 (Rat = 106, Rat --- 108). 

(a) 

~ ¥ j = 0 . 0 0 9  P60s 

• • m  ,41 j 0.005 

(b) 

t=180s 

t = 2 0 s  

~ 6 0 s  

Fig. 6. Stream function and the salinity interface (RaT = 10 4, Rac = 106). 

shape but its spreading rate is higher for higher Ray- 
leigh number.  However,  for the lower Lewis number 
(Le = 1), the sa]Linity interface has a different shape 
which is less deformed due to a weaker convection. 
The thermal and solutal effects enhance the heat and 
mass exchange in the system leading to a double 

diffusive phenomenon.  By comparing Fig. 6(a) with 
6(b), one can see the shaping of  the plume. For  the 
case of  Le = 1, the stream function contour  remain 
blunt whereas, for Le = 100, the plume takes shape at 
a time as early as 20 s. 

In order to conduct a direct comparison with the 
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experiment to avoid any free surface contamination. 
It is well known that the surface tension varies linearly 
with temperature and concentration [8, 9]. The ther- 
mal Marangoni convection moves fluid at the free 
surface from low surface tension (high temperature) 
to a higher surface tension (low temperature). The 
solutal Marangoni convection moves fluid at the free 
surface from low surface tension (low concentration) 
to a higher surface tension (high concentration). The 
surface tension, am, is defined as : 

darn do'm 
cr m = trmo---d-~(T- Vo)+--~(C-Co)  (12) 

where tr,, 0 is the average surface tension at the refer- 
ence temperature To, co. Using the same dimensionless 
variables, as stated earlier, equation (12) becomes: 

1 
(Sm = ~ a  - M a r "  O+ Mac" C (13) 

results of Maxworthy [3], the case of fixed volume 
release was used. Maxworthy used a Turner number 
of  1.06 for this case. The essential parameter used for 
comparison was the intruding length as a function 
of time. In order to facilitate the comparison, the 
intruding length was non-dimensionalised. Figure 7 
compares our results with that of Maxworthy. Excel- 
lent match is observed during the early time following 
the fluid release. Results start to deviate considerably 
beyond 50 s of the fluid release. Note that the thermal 
Rayleigh number that we used was 104. If a thermal 
Rayleigh number of 106 was used, the agreement at 
the early phase remains unaffected whereas a much 
faster intrusion is observed (dimensionless length of 
0.56) at a time of 60 s. A closer agreement is observed 
for the late period by increasing the Turner number 
to two. Results with a Turner number of two are also 
shown in Fig. 7. Note that for a Turner number of 
two, the agreement is somewhat better at the later 
stage whereas the results remain unchanged at the 
early stage of fluid intrusion. This relative insensitivity 
to Turner number was previously observed by Yosh- 
ida et al. [10]. In summary, Fig. 7 shows that the 
assumption of no-slip boundary condition is not 
adequate to capture the movement of the intruding 
plume at the later stage of the fluid intrusion. 

3.2. Upper horizontal wall is a free surface 
This particular case is closer to the step-up that 

Maxworthy [3] used in his experiment. He assumed 
that the surface tension effect at the free surface does 
not exist. He justified his assumption by indicating 
that contamination at the free surface removed the 
surface tension gradient effect. Tanny et al. [13] stud- 
ied the interaction between the double diffusive and 
the surface tension gradient phenomena by heating 
the bottom of the cavity. They carefully set up their 

where the Capillary (Ca) and the Marangoni 
(Mar, Mac) numbers are defined as 

Ca - -  # U o  

(TmO 

[yrIAT ]YclAc 
M A T - - -  and M a c =  (14) 

#uo #u0 

Here 7r is the thermal surface tension gradient known 
as dam/d T which has a value of -0.1692 dynes cm-  
C -1. Also, Yc is the solutal surface tension gradient 
known as dtrm/dc which has a value of +0.367 dynes 
cm -~ wt% -j .  

The boundary conditions remain the same as the 
previous case and only a shear stress at the free surface 
(equation 13) is included to take into consideration 
the Marangoni convection. At the free surface the 
velocity in the x direction is not equal to zero. 
However, the velocity in the y direction is set equal to 
zero and therefore, no free surface deformation will 
occur. Three different cases were studied. In the first 
case, the effect of the thermal Marangoni convection 
combined with the double diffusive effect was exam- 
ined. The solutal Marangoni convection combined 
with the double diffusive effect was studied in the 
second case and finally both the thermal and solutal 
Marangoni convection (e.g. equation 13) combined 
with the double diffusive convection was studied in 
detail. In this analysis, the thermal Rayleigh number 
Rat  was set equal to 10 4 and the Lewis number was 
set equal to one. 

3.2.1. Thermal Marangoni convection. Figure 8 
shows the temperature and the velocity profiles at the 
free surface. As indicated in Section 2.1, the initial 
temperature boundary conditions was set equal to one 
in the hot salty water cavity and zero in the cold 
fresh water cavity. Therefore, at time t = 0 s, a zero 
temperature, at the free surface, is specified in the cold 
region (0 ~< X ~< 1) and a temperature equal to one is 
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Fig. 9. Stream function and concentration contours due to the thermal Marangoni convection (Le = 1, 
Rat = 10 4, Rac = 104). 

prescribed (X > 1, Y = 1) in the salty region at the 
free surface. 

As the time increases, the double diffusive con- 
vection creates a mixing flow and, therefore, changes 
the free surface thermal profile as shown in Fig. 8(a) 
at a time t = 7.5 s. The Marangoni convection at that 
stage becomes effective at a small portion of the free 
surface as observed in Fig. 8(b) by displaying the 
velocity in the x direction. A negative velocity indi- 
cates a counter-clockwise flow, which adds to the dou- 
ble diffusive convection. This sharp temperature 
gradient is reduced with time due to the mixing and, 
hence, the velocity at the free surface becomes smaller. 
Nevertheless, the convection in the counter-clockwise 
direction is enhanced as shown in Fig. 8(b). Contrary 
to the previous case, the temperature/concentration 
profiles show a smooth profile and the local humps, 
that were characteristic of the previous case, disap- 
peared. Instead, a more 'dispersion-control' profile 
appears and the stability is reached without any tran- 
sitory perturbations. Similar behaviour is observed for 
the velocity profiles. However, strength of the counter 
current is higher at the earlier stage. At a later time, 
the velocity profile becomes blunt and looses strength 
at the same time. 

The stream function and the concentration con- 
tours are shown in Fig. 9. By comparing Figs. 6(a) 
and 9(a), the latter is subject to a stronger flow due 
to the thermal Marangoni convection. The stream 
function contours show that strong convective cells 
are formed from the beginning of the numerical exper- 
imentation. At a later time (60 s) the contour shows 
spreading and assumes an elliptical shape. This is a 
characteristic of the thermal Marangoni convection. 

Similar spreading is observed in the concentration 
contours. However, for a later time, the concentration 
contour spreads in such a way that the symmetry is 
lost and local perturbations become prominent at the 
base. 

3.2.2. Solutal Marangoni convection. The surface 
tension gradient depends as explained earlier on the 
temperature and on the solute gradients. In the tem- 
perature case, the gradient is negative. This means 
that flows will occur from a high-temperature point 
(lower surface tension) to a lower temperature point 
(higher surface tension). In the contrary, for the solute 
case, the surface tension gradient is positive. This indi- 
cates that the flow moves from low concentration 
point (low surface tension) to a higher-concentration 
point (high surface tension) which is opposite to the 
thermal Marangoni convection. 

Again in this case, the Lewis number is set equal to 
unity and both the temperature and concentration 
profiles are the same. This case is different from the 
previous case that had a different surface tension 
gradient in sign and magnitude. The initial tem- 
perature and concentration profiles remain the same 
as in the previous case. Figure 10(a) displays the con- 
centration profiles at the free surface at a time t = 7.5 
s. Different concentration gradients are shown in Fig. 
10(a). Figure 10(b) shows the corresponding con- 
vective cells of opposite direction at the free surface. 
Another means of examining the direction of the con- 
vective cells is by observing the velocity profiles, as 
shown in Fig. 10(b). It is worth noting that the velocity 
is in a non-dimensional form and the reference vel- 
ocity uo is equal to 0.4427 cm s-1 [for our case see 
equation (5)]. As the time increases, the mixing effect 
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Fig. 11. Stream function and concentration contours due to the solutal Marangoni convection (Le = 1, 
Rar = 104, Rac = 104). 

created a more uniform distribution of the solute as 
shown in Figs. 10(a) and 1 l(a). This translates into a 
smoother flow pattern as shown in Figs. 10(b) and 
11 (b). It is clear that the solutal Marangoni convection 
has enhanced the mixing in the cavity and has created 
smaller convective cells. The flow is some agitated 
than in the case of the thermal Marangoni convection. 

3.2.3. Combined thermal and solutal Marangoni 
convection. In order to reach a more realistic case, 
both thermal and solutal Marangoni convections were 
included in the model. In the previous case, the effect 
of each term of the Marangoni convection was studied 
separately. The model was repeated by combining 
both effects for lhe case of a Lewis number, Le = 1 
and a thermal Rayleigh number, Rat = 1 0  4. Figures 
12 and 13 display the concentration, the velocity at 
the free surface and the stream function contour plots. 
The stream function contours indicate that the intense 
cellular pattern that was initiated by invoking solutal 
Marangoni effect, has been subsided significantly. 
However, the number of cells remains high as com- 
pared to the case of thermal Marangoni convection 
(see Fig. 9). The general profile of the concentration 
contours is similar to the one observed with solutal 
Marangoni conw~ction. However, the flow is tangibly 
less intense. The competing forces of surface tension 
and double diffusion gives rise to the smearing of the 
concentration profile. Such smearing is absent in the 
presence of uniquely thermal Marangoni effect. The 
thermal Marangoni number Mar was equal to 27 and 
the solutal Marangoni number Mac was equal to 59. 
Based on the work done by Chen and Su [12], for the 
chosen Marangoni numbers, the flow is always located 

in the stable regime. Referring back to the Maxworthy 
experiment, one can see that even if the experiment 
had thermal Marangoni effect, a change in the con- 
centration profile would not be detected. The solutal 
Marangoni effect, on the other hand, would have 
made the concentration plumes propagate differently 
than the one observed. It can be said that the solutal 
Marangoni convection was negated by the con- 
tamination of the free surface in the Maxworthy 
experiment. 

4. CONCLUSIONS 

In this study, the importance of the interaction 
between the double diffusive convection and the Mar- 
angoni convection in the intrusion process is dem- 
onstrated. It is shown that the double diffusive con- 
vection plays a major role in the intrusion of the salted 
water into flesh water. Besides temperature, salinity 
induces a strong convection. In addition, if a free 
surface exists in the system, another surface force, 
namely the thermal and solutal Marangoni convec- 
tion, enhances this convection. The role and the inter- 
actions among different parameters, mainly the ther- 
mal Rayleigh number, the thermal and solutal 
Marangoni numbers on the convection scheme were 
demonstrated. Based on the numerical study of the 
experimental model of Maxworthy, it is concluded 
that surface forces should not be ignored but should 
be taken into consideration during the numerical 
analysis. However, as per the analysis of Maxworthy, 
his experimental set-up indeed lacked tangible influ- 
ence of the solutal Marangoni convection. 
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(a) 
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Fig. 13. Stream function and concentration contours due to the thermal and the solutal Marangoni 
convection (Le = 1, RaT = 10  4, Rac = 104). 
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